In the previous chapters, we built an image of the application and set up the environment to deploy it. Now let’s deploy the application to the Kubernetes cluster we configured.

Kubernetes manifests are used for deploying to Kubernetes. They describe the resources (Kubernetes objects) required for the application to run. These resources include Deployment (it is responsible for running applications in containers) and Service/Ingress (these are responsible for accessing running applications from inside and outside of the cluster).

Preparing the environment

If you haven’t prepared your environment during previous steps, please, do it using the instructions provided in the “Preparing the environment” chapter.

If your environment has stopped working or instructions in this chapter don’t work, please, refer to these hints:

Is Docker running?

Let’s launch Docker Desktop. It takes some time for this application to start Docker. If there are no errors during the startup process, check that Docker is running and is properly configured:

docker run hello-world

You will see the following output if the command completes successfully:

Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
b8dfde127a29: Pull complete
Digest: sha256:9f6ad537c5132bcce57f7a0a20e317228d382c3cd61edae14650eec68b2b345c
Status: Downloaded newer image for hello-world:latest

Hello from Docker!
This message shows that your installation appears to be working correctly.

Should you have any problems, please refer to the Docker documentation.

Let’s launch the Docker Desktop application. It takes some time for the application to start Docker. If there are no errors during the startup process, then check that Docker is running and is properly configured:

docker run hello-world

You will see the following output if the command completes successfully:

Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
b8dfde127a29: Pull complete
Digest: sha256:9f6ad537c5132bcce57f7a0a20e317228d382c3cd61edae14650eec68b2b345c
Status: Downloaded newer image for hello-world:latest

Hello from Docker!
This message shows that your installation appears to be working correctly.

Should you have any problems, please refer to the Docker documentation.

Start Docker:

sudo systemctl restart docker

Make sure that Docker is running:

sudo systemctl status docker

If the Docker start is successful, you will see the following output:

● docker.service - Docker Application Container Engine
     Loaded: loaded (/lib/systemd/system/docker.service; enabled; vendor preset: enabled)
     Active: active (running) since Thu 2021-06-24 13:05:17 MSK; 13s ago
TriggeredBy: ● docker.socket
       Docs: https://docs.docker.com
   Main PID: 2013888 (dockerd)
      Tasks: 36
     Memory: 100.3M
     CGroup: /system.slice/docker.service
             └─2013888 /usr/bin/dockerd -H fd:// --containerd=/run/containerd/containerd.sock

dockerd[2013888]: time="2021-06-24T13:05:16.936197880+03:00" level=warning msg="Your kernel does not support CPU realtime scheduler"
dockerd[2013888]: time="2021-06-24T13:05:16.936219851+03:00" level=warning msg="Your kernel does not support cgroup blkio weight"
dockerd[2013888]: time="2021-06-24T13:05:16.936224976+03:00" level=warning msg="Your kernel does not support cgroup blkio weight_device"
dockerd[2013888]: time="2021-06-24T13:05:16.936311001+03:00" level=info msg="Loading containers: start."
dockerd[2013888]: time="2021-06-24T13:05:17.119938367+03:00" level=info msg="Loading containers: done."
dockerd[2013888]: time="2021-06-24T13:05:17.134054120+03:00" level=info msg="Daemon has completed initialization"
systemd[1]: Started Docker Application Container Engine.
dockerd[2013888]: time="2021-06-24T13:05:17.148493957+03:00" level=info msg="API listen on /run/docker.sock"

Now let’s check if Docker is available and its configuration is correct:

docker run hello-world

You will see the following output if the command completes successfully:

Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
b8dfde127a29: Pull complete
Digest: sha256:9f6ad537c5132bcce57f7a0a20e317228d382c3cd61edae14650eec68b2b345c
Status: Downloaded newer image for hello-world:latest

Hello from Docker!
This message shows that your installation appears to be working correctly.

Should you have any problems, please refer to the Docker documentation.

Have you restarted the computer after setting up the environment?

Let’s start the minikube cluster we have already configured in the “Preparing the environment” chapter:

minikube start

Set the default Namespace so that you don’t have to specify it every time you invoke kubectl:

kubectl config set-context minikube --namespace=werf-guide-app

You will see the following output if the command completes successfully:

😄  minikube v1.20.0 on Ubuntu 20.04
✨  Using the docker driver based on existing profile
👍  Starting control plane node minikube in cluster minikube
🚜  Pulling base image ...
🎉  minikube 1.21.0 is available! Download it: https://github.com/kubernetes/minikube/releases/tag/v1.21.0
💡  To disable this notice, run: 'minikube config set WantUpdateNotification false'

🔄  Restarting existing docker container for "minikube" ...
🐳  Preparing Kubernetes v1.20.2 on Docker 20.10.6 ...
🔎  Verifying Kubernetes components...
    ▪ Using image gcr.io/google_containers/kube-registry-proxy:0.4
    ▪ Using image k8s.gcr.io/ingress-nginx/controller:v0.44.0
    ▪ Using image registry:2.7.1
    ▪ Using image docker.io/jettech/kube-webhook-certgen:v1.5.1
    ▪ Using image docker.io/jettech/kube-webhook-certgen:v1.5.1
    ▪ Using image gcr.io/k8s-minikube/storage-provisioner:v5
🔎  Verifying registry addon...
🔎  Verifying ingress addon...
🌟  Enabled addons: storage-provisioner, registry, default-storageclass, ingress
🏄  Done! kubectl is now configured to use "minikube" cluster and "werf-guide-app" namespace by default

Make sure that the command output contains the following line:

Restarting existing docker container for "minikube"

Its absence means that a new minikube cluster was created instead of using the old one. In this case, repeat all the steps required to install the environment using minikube.

Now run the command in the background PowerShell terminal (do not close its window):

minikube tunnel --cleanup=true

Let’s start the minikube cluster we have already configured in the “Preparing the environment” chapter:

minikube start --namespace werf-guide-app

Set the default Namespace so that you don’t have to specify it every time you invoke kubectl:

kubectl config set-context minikube --namespace=werf-guide-app

You will see the following output if the command completes successfully:

😄  minikube v1.20.0 on Ubuntu 20.04
✨  Using the docker driver based on existing profile
👍  Starting control plane node minikube in cluster minikube
🚜  Pulling base image ...
🎉  minikube 1.21.0 is available! Download it: https://github.com/kubernetes/minikube/releases/tag/v1.21.0
💡  To disable this notice, run: 'minikube config set WantUpdateNotification false'

🔄  Restarting existing docker container for "minikube" ...
🐳  Preparing Kubernetes v1.20.2 on Docker 20.10.6 ...
🔎  Verifying Kubernetes components...
    ▪ Using image gcr.io/google_containers/kube-registry-proxy:0.4
    ▪ Using image k8s.gcr.io/ingress-nginx/controller:v0.44.0
    ▪ Using image registry:2.7.1
    ▪ Using image docker.io/jettech/kube-webhook-certgen:v1.5.1
    ▪ Using image docker.io/jettech/kube-webhook-certgen:v1.5.1
    ▪ Using image gcr.io/k8s-minikube/storage-provisioner:v5
🔎  Verifying registry addon...
🔎  Verifying ingress addon...
🌟  Enabled addons: storage-provisioner, registry, default-storageclass, ingress
🏄  Done! kubectl is now configured to use "minikube" cluster and "werf-guide-app" namespace by default

Make sure that the command output contains the following line:

Restarting existing docker container for "minikube"

Its absence means that a new minikube cluster was created instead of using the old one. In this case, repeat all the steps required to install the environment from scratch using minikube.

Did you accidentally delete the application's Namespace?

If you have inadvertently deleted Namespace of the application, you must run the following commands to proceed with the guide:

kubectl create namespace werf-guide-app
kubectl create secret docker-registry registrysecret \
  --docker-server='https://index.docker.io/v1/' \
  --docker-username='<Docker Hub username>' \
  --docker-password='<Docker Hub password>'

You will see the following output if the command completes successfully:

namespace/werf-guide-app created
secret/registrysecret created
Nothing helps; the environment or instructions keep failing.

If nothing worked, repeat all the steps described in the “Preparing the environment” chapter and create a new environment from scratch. If creating an environment from scratch did not help either, please, tell us about your problem in our Telegram chat or create an issue on GitHub. We will be happy to help you!

Preparing the repository

Update the existing repository containing the application:

Run the following commands in PowerShell:

cd ~/werf-guide/app

# To see what changes we will make later in this chapter, let's replace all the application files
# in the repository with new, modified files containing the changes described below.
git rm -r .
cp -Recurse -Force ~/werf-guide/guides/examples/basic/002_deploy/* .
git add .
git commit -m WIP
What changes we will make
# Enter the command below to show the files we are going to change.
git show --stat
# Enter the command below to show the changes that will be made.
git show

Run the following commands in Bash:

cd ~/werf-guide/app

# To see what changes we will make later in this chapter, let's replace all the application files
# in the repository with new, modified files containing the changes described below.
git rm -r .
cp -rf ~/werf-guide/guides/examples/basic/002_deploy/. .
git add .
git commit -m WIP
What changes we will make
# Enter the command below to show files we are going to change.
git show --stat
# Enter the command below to show the changes that will be made.
git show

Doesn’t work? Try the instructions on the “I am just starting from this chapter” tab above.

Prepare a new repository with the application:

Run the following commands in PowerShell:

# Clone the example repository to ~/werf-guide/guides (if you have not cloned it yet).
if (-not (Test-Path ~/werf-guide/guides)) {
  git clone https://github.com/werf/website $env:HOMEPATH/werf-guide/guides
}

# Copy the (unchanged) application files to ~/werf-guide/app.
rm -Recurse -Force ~/werf-guide/app
cp -Recurse -Force ~/werf-guide/guides/examples/basic/001_build ~/werf-guide/app

# Make the ~/werf-guide/app directory a git repository.
cd ~/werf-guide/app
git init
git add .
git commit -m initial

# To see what changes we will make later in this chapter, let's replace all the application files
# in the repository with new, modified files containing the changes described below.
git rm -r .
cp -Recurse -Force ~/werf-guide/guides/examples/basic/002_deploy/* .
git add .
git commit -m WIP
What changes we will make
# Enter the command below to show the files we are going to change.
git show --stat
# Enter the command below to show the changes that will be made.
git show

Run the following commands in Bash:

# Clone the example repository to ~/werf-guide/guides (if you have not cloned it yet).
test -e ~/werf-guide/guides || git clone https://github.com/werf/website ~/werf-guide/guides

# Copy the (unchanged) application files to ~/werf-guide/app.
rm -rf ~/werf-guide/app
cp -rf ~/werf-guide/guides/examples/basic/001_build ~/werf-guide/app

# Make the ~/werf-guide/app directory a git repository.
cd ~/werf-guide/app
git init
git add .
git commit -m initial

# To see what changes we will make later in this chapter, let's replace all the application files
# in the repository with new, modified files containing the changes described below.
git rm -r .
cp -rf ~/werf-guide/guides/examples/basic/002_deploy/. .
git add .
git commit -m WIP
What changes we will make
# Enter the command below to show files we are going to change.
git show --stat
# Enter the command below to show the changes that will be made.
git show

**Please note! ** At this point, we have copied all the necessary files and committed the changes to the repository. The sections below are for information purposes only (up to the “Deploying in Kubernetes” section). You do not need to create or edit any files **!

Deployment

The Deployment resource creates a set of resources for launching the application. Here is the example of the Deployment resource:

apiVersion: apps/v1
kind: Deployment
metadata:
  name: werf-guide-app
spec:
  replicas: 1
  selector:
    matchLabels:
      app: werf-guide-app
  template:
    metadata:
      labels:
        app: werf-guide-app
    spec:
      imagePullSecrets:
      - name: registrysecret
      containers:
      - name: app
        image: {{ .Values.werf.image.app }}
        command: ["/app/start.sh"]
        ports:
        - containerPort: 8000
apiVersion: apps/v1 kind: Deployment metadata: name: werf-guide-app spec: replicas: 1 selector: matchLabels: app: werf-guide-app template: metadata: labels: app: werf-guide-app spec: imagePullSecrets: - name: registrysecret containers: - name: app image: {{ .Values.werf.image.app }} command: ["/app/start.sh"] ports: - containerPort: 8000

Here, we insert the full name of the Docker image of our application using the template engine: {{ .Values.werf.image.app }}. Note that you must use the component name specified in werf.yaml (app in our case) to access this value.

werf automatically adds full names of the images to build as well as other service data to values of the Helm Chart (.Values). You can access them using the werf key.

werf only rebuilds images when the added files are changed (those used in the Dockerfile COPY/ADD instructions) or if werf.yaml itself is changed. The image tag will also change during a rebuild resulting in the Deployment update. If no changes were made to the files mentioned above, the werf would not rebuild the image. The Deployment and the resources it creates will not be redeployed because the latest version of the application is already running in the cluster.

Service

The Service resource allows other applications in the cluster to connect to your application:

apiVersion: v1
kind: Service
metadata:
  name: werf-guide-app
spec:
  selector:
    app: werf-guide-app
  ports:
  - name: http
    port: 8000
apiVersion: v1 kind: Service metadata: name: werf-guide-app spec: selector: app: werf-guide-app ports: - name: http port: 8000

Ingress

The Ingress resource manages external access to the cluster (unlike a Service in Kubernetes that defines a policy for accessing applications inside the cluster). The Ingress configuration defines what Service to use for external traffic sent to the werf-guide-app.test domain.

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  annotations:
    kubernetes.io/ingress.class: nginx
  name: werf-guide-app
spec:
  rules:
  - host: werf-guide-app.test
    http:
      paths:
      - path: /
        pathType: Prefix
        backend:
          service:
            name: werf-guide-app
            port:
              number: 8000
apiVersion: networking.k8s.io/v1 kind: Ingress metadata: annotations: kubernetes.io/ingress.class: nginx name: werf-guide-app spec: rules: - host: werf-guide-app.test http: paths: - path: / pathType: Prefix backend: service: name: werf-guide-app port: number: 8000

Deploying to Kubernetes

Note that you need to go back to the previous chapter and recreate the registry secret if you deleted the application namespace.

The werf converge command builds the application and deploys it to Kubernetes:

werf converge --repo <DOCKER HUB USERNAME>/werf-guide-app

The following output indicates that the process has been completed successfully:

...
│ app/dockerfile  Successfully built 4c1054085159
│ │ app/dockerfile  Successfully tagged 93c05bf8-c459-4768-b388-3cdbc80e2868:latest
│ ├ Info
│ │       name: <DOCKER HUB USERNAME>/werf-guide-app:f4caaa836701e5346c4a0514bb977362ba5fe4ae114d0176f6a6c8cc-1612277803607
│ │       size: 371.4 MiB
│ └ Building stage app/dockerfile (40.31 seconds)
└ :boat: image app (41.13 seconds)
...
┌ Waiting for release resources to become ready
│ ┌ Status progress
│ │ DEPLOYMENT                                                                                                                                                      REPLICAS                      AVAILABLE                        UP-TO-DATE
│ │ app                                                                                                                                                        1/1                           1                                1
│ │ │   POD                                                           READY                  RESTARTS                       STATUS
│ │ └── 687f8cc569-n6gkw                                              1/1                    0                              Running
│ └ Status progress
└ Waiting for release resources to become ready (0.02 seconds)

NAME: werf-guide-app
LAST DEPLOYED: Tue Jul  2 21:57:23 2022
NAMESPACE: werf-guide-app
STATUS: deployed
REVISION: 1
TEST SUITE: None
Running time 62.66 seconds

Now, if you make a request to the application:

curl http://werf-guide-app.test/ping

… you will get the following response:

pong

Depending on your computer configuration and other factors, it may take some time (up to a minute) for the response to arrive.

prev
next